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ABSTRACT

As the Amazon rainforest faces ever-increasing deforestation, finding a balance between conservation and eco-
nomic progress becomes imperative. This study investigates the relationship between regional economic
complexity (ECI-R) and deforestation in municipalities within the Brazilian Amazon between 2006 and 2021.
Employing different econometric techniques, we untangle the multifaceted factors determining land use choices
while considering variables associated with agriculture, extraction, and livestock activities. Rigorous testing
confirms the validity of our findings. The results suggest an “environmental Kuznets curve” at play in the
Amazon. This means that a slight increase in regional economic complexity (0.1 unit) initially leads to a sig-
nificant rise in deforestation (28 %) but is followed by a decrease (8.4 %) in the following year. Interestingly,
environmental fines appear to be a powerful tool for controlling deforestation. Further analysis using Probit
regressions reinforces the key roles of economic complexity and environmental enforcement. Municipalities with
higher regional complexity were 20 % more likely to experience low deforestation and high employment growth
between 2006 and 2011. However, this trend reversed in later periods. Ultimately, the results indicate a complex
relationship between economic complexity and deforestation. These findings highlight governments’ critical role
in promoting sustainable development in the Amazon. There are limits to such an approach but supporting
“green” industries and curbing deforestation-related activities can steer the region towards a more prosperous

and environmentally responsible future.

1. Introduction

A growing body of empirical research on economic complexity has
yielded compelling evidence across various analytical dimensions. This
research explores the intricate relationship between the Economic
Complexity Index (ECI) and income growth (Hausmann et al., 2014).
The ECI serves as a proxy measure of a region’s productive knowledge
base. Regions with a more diversified production structure and a lower
prevalence of commonly produced goods exhibit higher economic
complexity. This is because diversified production of less ubiquitous
goods necessitates a broader range of productive knowledge. The
acquisition of new knowledge, manifested by diversification into less
common goods, has been associated with several positive outcomes,
including increased green patents (Mealy and Teytelboym, 2022),
reduced greenhouse gas (GHG) emissions (Romero and Gramkow,
2021), and lower economic disparities (Hartmann et al., 2017). Similar
studies conducted at the regional level further suggest that complexity

also influences long-term growth in formal employment (Romero et al.,
2022).

These findings highlight the potential of fostering productive
complexity as a catalyst for sustainable development. This approach
presents itself as a potential solution to a critical challenge faced by
developing nations in the context of profound climate change that
threatens humanity’s future (Stern, 2007). Since 2015, major interna-
tional agreements like the Paris Agreement and the Sustainable Devel-
opment Goals have strived to find solutions that achieve a balance
between transitioning to a low-carbon future and mitigating the
devastating effects of climate change, while simultaneously promoting
inclusive development.

The Brazilian Amazon, encompassing roughly 60 % of the Amazon
rainforest, presents a crucial case study for sustainable development.
This vast region has suffered from deforestation since the mid-1960s,
often under the guise of economic progress (Andersen et al., 2002).
Paradoxically, it lags behind most of Brazil in key development metrics.
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A. Annual Variation Rate of Deforestation
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Fig. 1. Deforestation and Employment Trends in Legal Amazon. .
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Beyond its vital role as a carbon sink, the Amazon rainforest plays an
even more critical role in the global water cycle. Teeming with biodi-
versity, much of it still unknown, the Amazon holds immense potential.
However, a recent unsettling trend suggests parts of the Amazon are now
emitting more CO2 than they absorb (Gatti et al., 2021). Left unchecked,
this could disrupt regional and even global climate patterns. Finding
sustainable economic alternatives for the Amazon is thus crucial not
only for Brazil and the region itself but for the entire planet.

However, a simplistic approach of boosting Amazonian environ-
mental preservation solely through economic complexity requires closer
scrutiny. In theory, any new activity, even those directly or indirectly
harming the rainforest, could raise a region’s Economic Complexity
Index (ECI), especially in areas with limited existing production. A
logical hypothesis emerges: a minimum level of local capabilities is
likely needed before economic complexity translates into activities less
damaging to the environment. This hypothesis aligns with the envi-
ronmental Kuznets curve (Tritsch & Arvor, 2016), which suggests an
inverted U-shaped relationship between deforestation and income.
Initial growth may lead to increased deforestation, but later growth
leads to a decline. Similar findings were documented by Rodrigues et al.
(2009), who observed a positive correlation between deforestation and
development indicators in early stages, followed by a negative associa-
tion in later stages.

Beyond the local stock of capabilities, the complex relationship be-
tween economic complexity and deforestation is influenced by other
factors. Deforestation has various contributing forces, which can also
shape the types of industries a region specializes in. Therefore, before
considering increased economic complexity as a panacea for sustainable
development, it’s crucial to investigate under what conditions and by
what other factors the relationship between deforestation and
complexity is mediated.

This study utilizes econometric techniques to analyze the complex
factors influencing land-use choices and deforestation within munici-
palities in the Brazilian Legal Amazon from 2006 to 2021. While the
primary focus is on the role of economic complexity changes in defor-
estation, the model also incorporates other key drivers known to influ-
ence deforestation in the region. These factors include commodity prices
(such as meat, soy, and timber), government policies related to settle-
ments and protected areas, environmental agency actions (including
enforcement actions by IBAMA), and variables tied to the political-
economic cycle that might influence land-use decisions. Generalized
Method of Moments (GMM) models are employed to ensure the
robustness of the results and mitigate potential endogeneity issues
associated with various policy outcomes in the base model. Finally, a
probit model is used to assess the predictive power of the Economic
Complexity Index (ECI) in relation to municipalities demonstrating
exceptional performance, either positive or negative, in terms of
deforestation control and formal job creation.

2. Deforestation, employment, and economic complexity in the
Brazilian Amazon

The inception of Amazon deforestation traces back to the 1960s,
spurred by the Brazilian government’s extensive infrastructure initia-
tives, tax incentives, and rural settlement policies in the region.
Consequently, an annual deforestation scale of around 1,000 square
kilometers took root. Market forces started intertwining with defores-
tation dynamics in the 1980s, with livestock farming and soy cultivation
emerging as pivotal drivers (Andersen et al., 2002), propelling the
deforestation rate upwards. In 1988, the National Institute for Space
Research (INPE) started the satellite monitoring of the Amazon,
revealing an annual deforestation rate equivalent to Northern Ireland’s
area (roughly 13,800 square kilometers), with the states of Para and
Mato Grosso as the most significant contributors to this loss.

Despite the consistent expansion of the Amazon’s overall deforested
area, the pace of deforestation has demonstrated fluctuations in
response to economic, political, and local cycles. Fig. 1A shows the
annual change in deforestation in Legal Amazon' from 2006 to 2021.
The high deforestation rate in the initial three years is noteworthy. Be-
tween 2009 and 2017, the growth in total deforested areas was
considerably reduced. A renewed deforestation surge was witnessed
from 2018 to 2021.

However, this deforestation progress hasn’t yielded the anticipated
economic gains for the region. As depicted in Fig. 1B, formal employ-
ment per capita growth in Legal Amazon municipalities aligns with the
country’s economic cycles. Between 2006 and 2014, the average
increased by 39 %, reaching its peak at around 165 formal positions per
1,000 inhabitants in the region. Following a dip in 2015-2016, relative
stability persisted until 2020. The year 2021 brings a relative upswing,
with a 6 % increase compared to 2020. A comparison between Fig. 1A
and B indicates that the economic activities linked with deforestation
hold minimal ties with formal job creation in the region, presenting a
doubly negative scenario: biome degradation alongside limited formal
employment advancement.

Analyzing Amazonian municipalities based on deforestation and
employment levels, Rodrigues et al. (2009) uncovered a positive cor-
relation between deforestation and socioeconomic development in-
dicators in the initial deforestation stages, transitioning to a negative
association in the advanced stages. This trend echoes the environmental
Kuznets curve, indicating a U-shaped relationship between income and
deforestation in the region during 2010 (Tritsch and Arvor, 2016). This
implies that higher income is associated with increased deforestation
during early developmental phases, eventually leading to reductions as
income grows higher.

Given the established empirical linkage between economic

! The Legal Amazon is an area that corresponds to 59% of the Brazilian
territory and encompasses a total of eight states (Acre, Amapa, Amazonas, Mato
Grosso, Pard, Rondonia, Roraima and Tocantins) and part of the State of
Maranhao (west of the meridian 44°W), totaling 5.0 million km?,
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A. Average Complexity by Deforestation Level
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Fig. 2. Municipal Economic Complexity in the Amazon. .
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complexity and socio-economic and environmental development met-
rics, it is natural to anticipate a parallel phenomenon concerning the
association between deforestation and complexity. In theory, according
to Romero and Gramkow (2021), an increase in economic complexity
indicates the accumulation of productive knowledge in the region,
which would translate into (i) structural change towards sectors with
lower emission intensity; and (ii) the adoption of technologically
advanced and less pollutant production methods. Fig. 2 presents data
from diverse Legal Amazon municipalities, considering different levels
of deforestation and complexity. Notably, these curves appear to echo
the mirrored pattern witnessed in the correlation between deforestation
and socio-economic indicators. Municipalities undergoing intermediate
deforestation stages tend to exhibit notably higher complexity levels
compared to those in more advanced deforestation stages. The figure
also highlights the recent decline in complexity indicators across
Amazonian municipalities, particularly in areas with diminished vege-
tation cover preservation.

Intriguingly, this aggregated data implies that nurturing alternative
economic avenues for income and employment growth in the region,
characterized by productive diversification, might entail an initial ac-
celeration of deforestation. This phenomenon could potentially be
“counterbalanced” by boosting complexity, thereby facilitating future
productive specialization less dependent on deforestation-related sec-
tors. However, affirming this deduction’s partial or complete validity
requires a more comprehensive investigation. Moreover, delving into
sectors that harmonize preservation and development and identifying
the complexity threshold required for accessing such sectors becomes of
paramount relevance. This concern is amplified in the Amazonian
context due to the region’s relatively underdeveloped municipal pro-
ductive structures, which constrain diversification opportunities toward
higher-complexity sectors.

3. Determinants of deforestation in the Legal Amazon

To understand the association between economic complexity and
deforestation and better define controls for the econometric regressions,
it is necessary to explore the known economic drivers of deforestation. In
a simple approach, deforestation hinges on the disparity between
anticipated profits from unsustainable land use and sustainable alter-
natives, where a larger gap means higher anticipated deforestation of
preserved zones (Angelsen, 1999). As Hargrave and Kis-Katos (2013)
argue, the expected gains from both unsustainable and sustainable land
utilization in the Amazon are influenced by several objective factors
such as commodity prices, credit, environmental policies, law enforce-
ment, etc. In the next paragraphs, we explore some of those objective
drivers pointed out by the literature.

First, agricultural product prices are important factors for increasing
deforestation. It is widely accepted that agricultural expansion for
commodities production is the main driver of deforestation in the world

and the Amazon Rainforest, even if there is no consensus about the size
of agricultural-driven deforestation (Carter et al., 2017; Curtis et al.,
2018; De Sy et al., 2019; Pendrill et al., 2022). As prices of agricultural
products from areas with deforestation (chiefly meat and soy) increase,
the gap between those predatory activities and sustainable alternatives
also increases, and deforestation pressures rise as well. The same is valid
for the price of timber, which is directly extracted from the forest and
sold locally or abroad” (Hargrave and Kis-Katos, 2013). Hence, higher
prices of agricultural goods and deforestation-related products are fac-
tors that tend to increase agricultural-driven deforestation, as well as
“agricultural-driven deforestation with no agricultural production
expansion”, which is deforestation associated with agriculture but not
its direct result, such as land speculation and logging for later agricul-
tural land use (Pendrill et al., 2022; Costa, 2023).

Besides the product prices, government fiscal and credit policies for
agriculture historically fostered deforestation. The tax policies allowed
cattle ranch owners to reinvest taxes from other activities in the cattle
ranch production in Amazon, fostering cattle production and, conse-
quently, deforestation. Also, subsidized credit allows cattle ranchers to
access lower interest rates, easily fund production and increase the
profitability of agriculture (Fearnside, 2005; Barreto et al, 2008). On the
lens of Angelsen’s conceptual framework presented before, these policies
reduce the cost of investments, allowing for more risky actions by the
agents or, in other words, enlarging the gap between net expected profits
of sustainable activities and activities related to illegal deforestation.
From 2008 on, however, this connection between credit and deforestation
has been minimized since the Brazilian Central Bank published resolution
3545, which demands the credit concession to be subject to compliance
with environmental regulations (Assuncao et al., 2020).

Mining activities are another important driver of deforestation. Ac-
cording to Sonter et al. (2017), the mining sector and related activities
were responsible for about 9 % of all deforestation in the Brazilian
Amazon between 2005 and 2015. The direct removal of forest within the
extraction area accounts for just part of the mining-induced deforesta-
tion, while the effects of mining-driven changes like urbanization,
development of mining supply chains, land use displacement and waste
discharge have impacts on deforestation that extend up to 70 km beyond
the mining sites. Hence, regions that diversify towards the mining sector

2 1t is also possible that higher prices of forest product (predominantly tim-
ber) imply the reverse effect on deforestation, amplifying forest investment
attractiveness, possibly fostering more sustainable forest or logging applica-
tions. However, the Brazilian Agricultural Census data as well the data from the
Forest Activities and Vegetal Extraction Research (PEVS/IBGE) show that the
weight of forestry activities products derived from deliberated investments in
the North region economy is too low comparing to other regions and to vegetal
extraction activities (Hargrave and Kis-Katos, 2013). As it is going to be clear
ahead, the econometric analysis confirm that wood prices are positively asso-
ciated to deforestation.
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may increase deforestation, while regions that push their economy away
from mining into more complex sectors may present reductions in
deforestation rates.

Road construction is also related to deforestation in tropical forests,
even though there is no consensus about the direction of this relation.
Besides the forest clearance needed to build the road itself, its con-
struction allows people to access and start economic activities in areas
that were completely conserved before that, especially natural-resources
exploitation activities. On the other hand, there’s an argument that the
effect of roads in the forestation depends on the initial land use condi-
tions of the regions. Improving road infrastructure in already populated
areas brings the possibility of developing new economic activities that
will enhance the region’s productive knowledge basis. The higher the
productive knowledge within a locality, the higher the income and
employment augmentation alternatives without deforestation. This last
line of analysis, however, does not find solid empirical evidence ground
(Andersen et al., 2002; Weinhold and Reis, 2008; Laurance et al., 2009;
Barber et al., 2014; Silva et al., 2023).

While higher product prices, credit policies, mining and road con-
struction tend to increase deforestation, important constraints also tend
to reduce the expected gains of predatory activities and decrease
deforestation. Studies suggest that law enforcement policies, such as the
environmental fines imposed by the Brazilian overseeing agency,
IBAMA, are field-based enforcement policies that effectively disincen-
tive deforestation. The prospect of fines for illegal deforestation is
considered in the cost-benefit analysis of agents when deciding about
deforesting or not. Higher probabilities of being fined an effective
amount per deforested area tend to reduce the expected gains of
deforestation. In this sense, law enforcement tends to lower deforesta-
tion rates (Assuncao et al., 2013; Borner et al., 2014).

Official environmental safeguards also constitute barriers to defor-
estation. Brazilian legislation assumes three protection classifications:
integral, limited (sustainable), or indigenous. Integral protection shields
uninhabited zones to preserve complete ecosystems. Sustainable use
regulations allow forest utilization in traditional ways. Indigenous areas
are exclusive to indigenous populations (Brasil, 2000; 2012). Several
studies show that protected areas are effective in reducing deforestation.
Moreover, there is evidence that a great part of deforestation in the last
years occurred in public land, especially in undesignated public forests.
The evidence points out that deforestation tends to be higher in un-
designated public land compared to any other kind of legal designation,
including private land. Hence, there is a strong argument in favor of
designating public land as protection areas and environmental safe-
guards in general as a way of effectively reducing deforestation (Soares-
Filho et al., 2010; Barber et al., 2014; Spracklen et al., 2015; Azevedo-
Ramos and Moutinho, 2018; Stabile, 2020, Salomao et al., 2021,
Soares-Filho, 2023; Moutinho and Azevedo-Ramos, 2023).

The reformation of Amazon municipalities’ productive structure
could also act as a catalyst for safeguarding regional vegetation.
Contemporary studies of Amazonian transformation call attention to
forest asset valuation, biological-cultural-social diversity preservation
via territorial planning, indigenous/traditional community land assur-
ances, and combatting destructive illegal actions. Additionally, a bur-
geoning focus on the bioeconomy highlights sustainable forest product
utilization (primarily non-timber) within family-oriented arrangements,
diverging from the extensive livestock and grain operations that bur-
geoned recently (Costa, 2012; Costa et al., 2022; Fernandes et al., 2022).

Moreover, as Costa (2023) argues, speculation in the land market,
especially around illegally grabbed public land, is an essential driver of
deforestation because the use-value of the land in the region is associ-
ated with deforestation-based activities. Lands that presently have for-
ests are seen in the market as the raw material for producing land
without forests. The upsurging of new sustainable possibilities is a
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possible path to dissociate the land in the Amazon from the
deforestation-driven use-value and redirect the speculative land markets
towards less harmful practices.

All these factors that boost or dampen deforestation are related to
economic activities in one way or another. More broadly, it points to a
connection between the productive structure of regions and deforesta-
tion. As we saw, the nature of some activities, such as agriculture and
mining, are intrinsically related to deforestation, while redirecting the
productive structure towards sectors related to bioeconomy could
potentially preserve the forest. In this perspective, exploring the
connection between indexes that measure (or are proxies for) the pro-
ductive structure and deforestation becomes necessary. As the economic
complexity indexes are the state-of-the-art indexes to assess productive
structure through the productive knowledge embedded in regions, they
are the natural choice to analyze this relationship.

4. Data and empirical strategy

In order to estimate the impact of economic complexity on defores-
tation in Amazon municipalities over the period 2006-2021, two
distinct exercises were carried out. The first exercise consists of esti-
mating econometric models to establish the complexity-deforestation
nexus while controlling for other determinants and scrutinizing poten-
tial moderating variables and sources of endogeneity, as described in
Section 3.2. The second exercise investigates whether augmented eco-
nomic complexity translates into improved or worsened municipal
performance in employment and forest cover preservation, as described
in Section 3.3. This latter endeavor bears the benefit of assessing sup-
plementary factors and their relative influence in singling out excep-
tional municipalities across these dimensions. This assessment is further
replicated across distinct sub-periods to isolate cyclic effects.

4.1. Data

Local economic complexity indicators for municipalities are derived
from employment data within the RAIS (Annual Report of Social In-
formation) of the Ministry of Labor, following Freitas (2019) and Freitas
et al. (2023), and available on the DataViva platform. Data on defores-
tation is sourced from PRODES, an annual monitoring system gauging
deforestation in the Brazilian Legal Amazon. Developed by the National
Institute for Space Research (INPE), PRODES is the main source of in-
formation for regional deforestation, employed by researchers and
governmental bodies to devise and enact forest conservation policies.
PRODES employs satellite imagery to observe forested zones and trace
vegetation cover alterations over time.

Table 1 presents the variables used in the econometric investigation,
their source, and disaggregation level. Due to the absence of municipal-
level agricultural and livestock product pricing data, certain proxies
were adopted. For instance, the value of a cattle “arroba” (a weight
measure) was employed as a proxy for meat prices, sourced from the
Brazilian Mercantile and Futures Exchange (BMFBovespa). It is impor-
tant to acknowledge that this method entails limitations and might not
mirror regional meat price fluctuations, as supplementary factors like
transportation, logistics, and local demand also mould local prices. As an
alternative, milk price was used in some regressions, estimated from
production value-to-quantity ratios per municipality. An analogous
approach was adopted to approximate local prices of timber, silvicul-
ture, and soy production. Additionally, the CEPEA-ESALQ/BM&FBO-
VESPA Soybean Indicator, gauging regional product prices, was assessed
for soy production.

To account for the influence of road infrastructure on deforestation,
we incorporated a variable capturing the total change in road length
(kilometers) for each municipality, as a proportion of its area. The
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numerator of the variable was constructed by subtracting the total state
and federal road network length in kilometers for 2010 from the same
data for 2021. Unfortunately, limitations in available data necessitated
this approach. Shapefiles and maps for the complete study period
(2006-2021) are not available for either state or federal roads, nor are
they published annually.
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sequent year. Moreover, the nonlinearity of ECI-R’s impact on defores-
tation is investigated through the interaction with other variables.
While theoretically sound, specification (1) might yield biased pa-
rameters if the potential endogeneity of some explanatory variables is
not properly controlled. This becomes particularly salient if specific
municipal discrepancies in deforestation dynamics affect some explan-

Box 1
Variables and data sources

Name Source Time availability Disaggregation
Total Deforested Area (km2) PRODES - INPE 2006-2021 Municipality
Forest Area (km2) 2006-2021 Municipality
Increase in Deforested Area (km2) 2006-2021 Municipality
Regional Economic Complexity Index (ECI-R) DataViva 2006-2021 Municipality
Round wood production (m3) Plant Extraction and Forestry Production - IBGE 2006-2021 Municipality
Value of roundwood production (R$) 2006-2021 Municipality
Silviculture production (tons) 2006-2021 Municipality
Silviculture production value (R$) 2006-2021 Municipality
Soy production (tons) Municipal Agricultural Production - IBGE 2006-2021 Municipality
Soybean production value (R$) 2006-2021 Municipality
Soy price (BRL per 60kg bag) Soy Indicator CEPEA-ESALQ/BM&FBOVESPA 2006-2021 National
Heads of herds (unit) Municipal Livestock Survey - IBGE 2006-2021 Municipality
Milk production (thousand liters) 2006-2021 Municipality
Milk production value (BRL) 2006-2021 Municipality
Arroba of fat ox (R$) BM&FBOVESPA 2006-2021 National
Financial Compensation for Exploitation of Mineral Resources (CFEM) National Mining Agency (ANM) 2006-2021 Municipality
Indigenous areas in the Legal Amazon TerraBrazilis/INPE Shapefile — 2006 Municipality
Conservation Units in the Legal Amazon TerraBrazilis/INPE Shapefile - 2006 Municipality
Road structure change (kilometers) National Department of Transport Infrastructure (DNIT) 2010 and 2021 Municipality
GDP per capita (BRL) IBGE 2006-2021 Municipality
Gross Added Value (BRL) 2006-2021 Municipality
Infraction notices IBAMA 2006-2021 Municipality
Issuance of fines 2006-2021 Municipality

Note: All monetary variables were deflated using the National Consumer Price Index (INPC), baseline 2006.

Source: own elaboration.

4.2. Model specification

Equation (1) forms the benchmark model for comprehending the
drivers of municipal deforestation:

lnDit = ﬂO +ﬂ1ECIRiL,¢,1 +ﬂnlnX,-[ + ﬂt +a; + € (1)

Where InD; represents the natural logarithm of annual deforestation
levels at the end of year t in municipality i. Regional economic
complexity is denoted by ECIR, and X; stands for the vector of control
variables. Municipality-specific fixed effects are denoted by a;, ac-
counting for local idiosyncrasies impacting deforestation variations. To
capture overall trends within deforestation dynamics, time-fixed effects
(4¢) are also included. Additionally, dummies for three sub-periods
(2006 to 2011, 2012 to 2016, and 2017 to 2021) are introduced to
isolate macroeconomic shocks and policy changes’ average effects on
price levels. These divisions, aligning with distinct economic and po-
litical phases within the country, aid in capturing pertinent contextual
shifts.

The vector X;; of control variables encompasses variables such as
meat and soybean prices in regions, timber prices, the logarithm of fine
intensity (quantity or value of environmental fines per area), excessive
rainfall index, logarithm of mining tax revenue, along with indicators of
general economic activity (logarithm of real per capita municipal GDP
and 2006 per capita GDP). Notably, some variables might exhibit a
greater impact in future periods than in the current period, such as
rainfall and ECI-R. Acquired capabilities take some time to foster new
activities. Rainfall, frequently intense between November and March,
might impact activities influencing vegetation suppression in the sub-

atory factors or are simultaneously driven by unobservable influences.
Some economic and political variables included in the explanatory
framework may also endogenously react to deforestation, influencing
estimated coefficients.

Productive diversification within activities requiring less deforesta-
tion augments local complexity, concurrently fostering income stability
and growth. However, this process might increase the pressure on the
green surroundings of rapidly expanding regions, potentially triggering
deforestation for local agricultural and livestock production. Theoreti-
cally, this second effect might outweigh the first, establishing a positive
correlation between complexity and deforestation. This result is ex-
pected to be milder in municipalities with lower preserved areas.
Conversely, higher deforestation could amplify income, theoretically
fueling local demand growth and productive diversification. The
incorporation of logarithms of per capita GDP, total preserved area, and
their growth rates seeks to mitigate these potential endogeneity sources.
Estimations using subsamples for distinct income and complexity levels
further serve to untangle these error sources.

Elucidating the impact of complexity gains on regional deforestation
is further complicated by the mediation of local productive structures.
Diversification might amplify deforestation in municipalities in the
initial stages of development, characterized by low complexity. This
hypothesis, aligned with the concept of an environmental Kuznets curve
(Can and Gozgor, 2017), suggests that entry into more intricate
deforestation-detached activities would only begin at higher diversifi-
cation levels. Notably, municipalities with more complex productive
structures possess a larger canvas for eco-friendly growth relative to
their less complex counterparts. Consequently, differentiation among
municipalities based on complexity levels becomes imperative to
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prevent the underestimation of parameters stemming from the extensive
prevalence of low-complexity municipalities in the region.

To mitigate potential endogeneity issues associated with various
policy outcomes,’,* equation (1) was also estimated using Arellano and
Bond’s (1991) difference GMM and Blundell and Bond’s (1998) system
GMM, incorporating Windmeijer’s (2005) correction in one and two
stages. These estimators are tailored for dynamic panels with “small T
and large N”, encompassing fixed effects and heteroskedastic and time-
correlated idiosyncratic errors, which are uncorrelated across in-
dividuals. These models rely on an instrumental variable approach
where lagged explanatory variables (or their differences) serve as
instruments.

The difference model (GMM-Dif) removes municipality fixed effects
(a;) from equation (1), representing distinctive municipal deforestation
variances attributed to time-constant, municipality-specific unobserv-
ables. This eliminates potential sources of bias, such as geoclimatic,
agroecological, and political factors. This approach surpasses the first
differencing in traditional estimation by accommodating pre-
determined, albeit non-strictly exogenous, variables. Using differences
here might render them endogenous.

The GMM-Dif estimator poses a challenge when levels verge on a
random walk, as levels constitute weak instruments for first differences.
The system model (GMM-Sys) augments the GMM-Dif by introducing
the original level equation, thereby introducing supplementary in-
struments enhancing efficiency. The estimator’s robustness depends on
the assumption that the instruments remain uncorrelated with unob-
served idiosyncratic effects. The dynamic model for deforestation to be
estimated using GMM is represented by:

InD; = By + pLECI_Ri + foInDje_1 + . Xie + A + i + & 2

Where past deforestation, ECI-R, environmental fine intensity, and, in
some specifications, timber prices, real per capita GDP, and protected
areas are treated as endogenous variables. D;_; is the vector of exoge-
nous variables/instruments. Soy and meat prices, and the period
dummies, are always treated as exogenous and thus used as instruments.

4.3. Economic complexity’s predictive power: municipal typology

To assess ECI-R’s predictive power concerning municipalities
demonstrating exceptional performance, either positively or negatively,
in terms of deforestation control and formal job creation, a categoriza-
tion of Amazon municipalities was devised using the dispersion of
vegetation loss and formal job gains over specific periods (2006-2011,
2012-2016, and 2017-2021). These timeframes were selected due to the
significance of (i) employment within local productive and social dy-
namics and (ii) the substantial impact of these three political-economic
periods on both deforestation trends and employment. This represents
the second econometric strategy employed in this paper.

3 Additionally, fluctuating food prices (soy and meat) are expected to
intensify deforestation pressures, while timber prices could curtail them due to
more favorable net profits from unsustainable land use. Yet, extensive defor-
estation might also drive down local agricultural and forest product prices
owing to increased supply, thereby accentuating endogeneity bias. While this
bias is relatively constrained for meat and soy prices, as national prices are
adopted in some estimations, concerns loom larger for local timber prices,
potentially prompting negative parameter coefficients. Partially alleviating this
concern, timber prices are measured not locally but as state-level averages in
certain specifications, as proposed by Hargrave and Kis-Katos (2013).

4 Likewise, increases in IBAMA activities in municipalities with higher
deforestation rates could lead to a positive correlation between environmental
fine intensity and deforestation, possibly skewing environmental fine co-
efficients for territory area (resulting in less negative values). Establishing
protection zones or settlements might also respond to expected deforestation
trends, contributing to a positive bias for anticipated negative coefficients.
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Employment and deforestation were cross-referenced, yielding four
municipality groups: Group (1) (preservation-employment) encom-
passes municipalities with minimal vegetation loss and significant job
gains in the period. Group (2) (preservation-unemployment) consists of
municipalities achieving notable preservation (top 50 %) but under-
performing in job creation (bottom 50 %). Group (3) (deforestation-
employment) covers municipalities excelling in job creation but strug-
gling to uphold vegetation coverage. Lastly, Group 4 (deforestation-
unemployment) includes municipalities facing both deforestation and
insufficient job generation. Fig. 3 illustrates the spatial distribution of
municipalities across these groups per period.

The probability of group affiliation was estimated using a Probit
model. This model supposes that the probability of a positive outcome in
a binary variable is governed by the cumulative normal distribution
function (Cameron and Trivedi, 2022), demonstrated as follows:

Pr(Groupl; = 1) = Q(fy + EC + f,Xi) ®)

where Q represents the cumulative normal function. Since annual data
rather than cross-sectional data were employed, the model was adapted
to incorporate intragroup correlation. Alongside ECI-R, explanatory
variables encompass total deforestation levels (%), soy, timber, meat,
and extractive production, IBAMA fines, Gross Value-Added sectoral
participation (agriculture, industry, public administration, and ser-
vices), as well as an environmental preservation levels.

The Probit model facilitates the evaluation of each included vari-
able’s effect on the average marginal probability of belonging to a
specific group. For ECI-R, the model unveils the probability of a mu-
nicipality experiencing ECI-R growth during the designated period
affiliating with one of the aforementioned groups.

5. Results and discussion
5.1. Assessing initial hypotheses

Table 1 presents the baseline model’s estimations for the 807 mu-
nicipalities within the Legal Amazon. Overall, the model exhibits a good
fit, explaining approximately 25 % of the annual variation in defores-
tation.” Appendix 1 details the strategy followed and the results for all
covariates. Overall, the results reveal a statistically significant negative
correlation between changes in the Economic Complexity Index (ECI-R)
and deforestation patterns, with a two-year lag. Ultimately, this implies
that a 0.1 unit increase in ECI-R is associated with a 1.7 % reduction in
deforestation over a two-year period.°

Beyond this key finding, the interaction terms in the model highlight
an important interplay between changes in complexity (ECI-R) and the
existing level of forest preservation (preserv). The level of preservation
itself is associated with a cumulative trend, where areas with higher
initial forest cover tend to experience less deforestation. Furthermore,
the interaction between ECI-R and preservation levels (Preserv # ECI-R)
suggests that increases in ECI-R are particularly effective in reducing
deforestation in these well-preserved areas. Similarly, a negative asso-
ciation between ECI-R and deforestation is observed for municipalities
with low and lower-middle levels of preservation. Interestingly, a pos-
itive association between complexity and deforestation is only evident in
municipalities with lower-middle preservation levels.

This outcome warrants further exploration of the transmission
channel between deforestation and economic complexity. The path-
dependent nature of development, characterized by the “relatedness

5 The results of the Hausman test, which tests the null hypothesis that the
intercepts of the fixed-effects model are uncorrelated with the regressors, was
rejected for each specification. This led to the decision to exclude the random-
effects model.

6 A more complete analysis of all the regressions in the fixed effect models
can be found in the appendix.
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Table 1
Municipal deforestation determinants: panel (2006-2021).
In Deforestation (annual) 1) (2) 3) 4) 5)
ECI-R 0.078 —0.0313 —0.063 - -
(0.082) (0.082) (0.092)
L1 (ECI-R) —0.008 —0.1166 —0.088 — —
(0.083) (0.083) (0.097)
L2 (ECI-R) - - —0.166* —0.189** —0.165**
(0.094) (0.094) (0.083)
Soy price —0.003 —0.009 —0.006 —0.006 —0.006
(0.008) (0.008) (0.009) (0.009) (0.008)
Wood price 0.103** 0.115%* 0.149%** 0.145%** 0.14%**
(0.047) (0.046) (0.049) (0.049) (0.047)
Meat price —0.0000787 0.0000139 —0.0001296 —0.0000933 —9.05E-05
(0.0002472) (0.0002439) (0.0002618) (0.000262) (0.0002467)
Extract price —2.19e-06 —3.91e-06* —4.59e-06* —4.75e-06* —4.52E-06**
(2.13e-06) (2.13e-06) (2.28e-06) (2.28e-06) (2.18E-06)
L1 (Rainfall deviances) —0.033%** —0.034%** —0.035%** —0.035%** —0.034%**
(0.006) (0.005) (0.006) (0.006) (0.006)
In Fines intensity —0.423%** —0.41%** —0.404%** —0.405%** —0.403***
(0.007) (0.007) (0.008) (0.008) (0.007)
In Protected areas 0.026%* 3.298 3.351 3.434 3.367
(0.013) (3.697) (3.853) (3.858) (3.753)
In Credit (general) 0.004 —0.007 —0.004 —0.004* —0.004
(0.004) (0.004) (0.003) (0.003) (0.003)
In Credit (agriculture) 0.003 0.003 0.003
(0.004) (0.004) (0.004)
In GDPpc —0.004* —0.004* —0.004 —0.004 —0.004
(0.002) (0.002) (0.002) (0.002) (0.002)
In GDPpcO 0.334%** (ommited) - - -
(0.076)
Interactions (see columns) Preserv Preserv # ECI-R ECI-R # Complex
Low - - (ommited) —0.237% —0.057
(0.139) (0.095)
Lower-middle - - 0.261** 0.227* 0.008
(0.111) (0.13) (0.174)
Upper-middle — — —0.0828 —0.027 —0.916**
(0.158) (0.134) (0.373)
High — - —0.564%** —0.266* 0.432
(0.194) (0.153) (0.822)
Period dummies (base = 2006-2011)
2012-2016 —0.397%%* —0.398%** —0.398%** —0.397%%* —0.38%**
(0.028) (0.027) (0.031) (0.031) (0.029)
2017-2021 —0.368%*** —0.368%** —0.381%%* —0.378%** —0.366%**
(0.034) (0.034) (0.038) (0.038) (0.036)
Constant —1.13* —13.062 —13.974 —14.487 —13.293
(0.665) (15.915) (17.61) (17.634) (16.16)
N 1210 1210 1063 1063 11,285
Municipalities 807 807 760 760 807
Fixed effects no yes yes yes yes
R2 0.381 0.269 0.262 0.261 0.263
F 4744.74 319.037 194.421 192.763 206.946
Corr 0 (assumed) —0.991 —0.99 —0.99 —0.988
Notes: Significance level * 0.1 ** 0.05 *** 0.01. Robust standard deviations in parenthesis. L1 and L2 denote, respectively, first and second order lags. # denotes a

multiplicative of two variables.
Source: own elaboration.

principle” (Hidalgo et al., 2018; Hidalgo, 2021), offers a potential
explanation. Preserved regions, lacking a history of deforestation-
related activities like agriculture or mining, possess a productive
knowledge base fundamentally different from such activities. These re-
gions are likely specialized in non-predatory economic pursuits.
Following the relatedness principle, where economies tend to diversify
into activities related to their existing knowledge base, these well-
preserved regions are on a path towards sustainable development. In
such cases, increasing economic complexity through diversification is
more likely to involve transitioning into other non-predatory activities.
Furthermore, applying Angelsen’s (1999) framework, these regions
might exhibit a smaller gap between the profitability of predatory and

non-predatory activities, thereby disincentivizing deforestation during
the complexification process. This scenario may be particularly relevant
for municipalities located deeper within the Legal Amazon, geographi-
cally distant from the expanding agricultural frontiers.

Conversely, in areas with extremely low forest preservation, the
expansion of deforestation-related activities like agriculture and mining
might have reached its peak, necessitating diversification into comple-
mentary sectors. These regions might transition into services or
manufacturing industries that could complement existing agriculture,
potentially offering alternative economic opportunities. In such a sce-
nario, the anticipated returns from non-predatory activities might
outweigh the cost of acquiring land from established farmers,
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incentivizing a shift towards a less-predatory economic model. This
situation could be observed in older cities or areas that were previously
on the agricultural frontier but are no longer.

A similar logic applies to the positive association between rising
economic complexity and deforestation observed in lower-middle
preservation regions. These areas have historically engaged in
deforestation-related activities, which are now embedded within their
productive knowledge base. If opportunities exist for further diversifi-
cation within this existing framework, even deforestation-related ac-
tivities may be included. Therefore, economic complexity in these
regions may initially increase alongside continued deforestation. For
instance, this might be the case for municipalities on the current agri-
cultural frontier where mining activities are also prominent.

However, a closer examination of Figure 4 reveals a more nuanced
relationship between economic complexity, deforestation, and devel-
opment stage (as measured by GDP per capita). The figure suggests a U-
shaped relationship between the marginal effects of ECI-R on defores-
tation, mediated by both preservation level and GDP per capita. This
interaction becomes clearer when plotted along the development
trajectory.

Figure 4 (left) depicts the average marginal effect of ECI-R on
deforestation across various GDP per capita levels (on a log scale). This
figure mirrors regression (4) by including GDP per capita as a multi-
plicative factor for ECI-R. The results confirm that municipalities with
higher initial preservation and income levels experience the greatest
reduction in deforestation associated with ECI-R increases. At lower
GDP levels, the marginal effect tends to be near zero for municipalities
with high preservation, while remaining positive for those with medium
and low preservation. Interestingly, municipalities with the lowest level
of forest cover appear largely unaffected by ECI-R changes, regardless of
GDP level. This suggests that these regions might be locked into devel-
opment trajectories incompatible with higher environmental protection,
highlighting the potential dangers of promoting regional economic
growth without fostering environmentally sustainable practices.

These findings align with the concept of an environmental Kuznets
curve, where economic complexity may initially lead to increased
deforestation during the mid-development stages. However, the results
also support the hypothesis that a more sophisticated set of capabilities
and productive sectors can ultimately reduce deforestation by offering
individuals greater incentives to pursue non-deforestation-related ac-
tivities, at least during specific development phases.

While the level of forest preservation captures information about a
region’s historical development path and helps explain a Kuznets-like
curve between ECI-R and deforestation, GDP per capita also reveals a
similar U-shaped relationship within specific preservation levels, as
shown in Figure 4. Figure 4 (left) further clarifies this interaction by

Marginal Effect

T T T T
0 5 10 15
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depicting the average marginal effect of ECI-R on deforestation across
various GDP per capita levels.

The results support the notion that municipalities with higher initial
preservation and income levels experience the greatest reduction in
deforestation with increasing ECI-R. This aligns with the observed cor-
relation between income and economic complexity. Places with higher
incomes often possess a more diversified and sophisticated productive
structure, potentially making them less reliant on deforestation-related
activities, similar to the low-preservation case discussed earlier.

Conversely, low-income economies might not have yet engaged in
deforestation-related activities like mining, which can initially boost
complexity and income. These regions lack a pre-existing economic
foundation based on deforestation. This explains why the marginal ef-
fect of increasing economic complexity on deforestation tends to be
close to zero for municipalities with high preservation at lower GDP
levels. This observation suggests that these regions might be trapped in
development trajectories incompatible with higher environmental pro-
tection, highlighting the importance of promoting green transformations
alongside regional economic growth.

Figure 4 (right) highlights the potential role of public policies in
enhancing the impact of ECI-R on deforestation control. The average
marginal effect of ECI-R on deforestation decreased between 2006 and
2011 and subsequent periods. This suggests that the diversification
witnessed in Brazilian Amazon municipalities since 2012 has increas-
ingly shifted away from non-deforestation sectors. The figure also re-
veals substantial case-level variability within each period, underscoring
the potential to develop the region’s productive structure while mini-
mizing environmental impact. These observations emphasize the
importance of well-designed green development policies.

Among the control variables, the intensity of environmental fines
emerged as the most influential explanatory factor for deforestation
reduction, as anticipated by existing literature (Assuncao et al., 2013;
Borner et al., 2014). Notably, the coefficient for this variable remained
robust across all specifications, suggesting its independent effect on
deforestation. Aligned with the framework proposed by Angelsen (1999)
and the findings of Hargrave and Kis-Katos (2013), a positive correlation
was observed between wood prices, growth in extractive activities, and
annual deforestation rates. This suggests that higher returns from un-
sustainable activities incentivize deforestation. Furthermore, the inclu-
sion of time-period dummies in all estimations consistently confirmed
the presence of aggregate temporal trends in deforestation dynamics.
These dummies account for macroeconomic shocks, average effects of
product prices, and policy changes at both regional and national scales.

However, as discussed in the methodology section and elaborated
upon in Appendix 1, the fixed effects model employed here may be
susceptible to endogeneity issues. Certain variables, such as meat prices,

Fiiects on linear predicton

Fig. 4. Average marginal effects of ECI-R on annual deforestation by GDP and preservation levels (left) and by period (right). Note: Figures considered with

a 95 % confidence interval. .
Source: own elaboration based on the results of the estimated models
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could theoretically react endogenously to changes in deforestation.
Increased deforestation could lead to higher meat production and lower
prices. A similar effect could occur with environmental fines, which are
partly driven by deforestation itself, and GDP per capita, which might
increase as forest land is converted for economic activities. More
importantly, economic activities like wood processing or logging
equipment production could be established in the region as a conse-
quence of deforestation. In such cases, deforestation could influence
diversification processes, leading to further changes in economic
complexity. Indicators of endogeneity in the model results are further
discussed in Appendix 1.
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5.2. Dealing with potential endogeneity

To address potential endogeneity concerns and further validate our
findings, we employed a dynamic panel method to re-examine the effect
of economic complexity on deforestation. Table 2 presents the results of
the Generalized Method of Moments (GMM) estimations, estimated in
both differences (regressions (1)-(3) and system form (regressions 4-6).
The instruments’ exogeneity within the estimation subgroups has been
confirmed across all models. More detail on the estimates and covariates
can be found in Appendix 2.

Overall, the results reveal a consistently positive association between
current-period ECI-R and the logarithm of annual deforestation area
across all six specifications. This consistency highlights the model’s

Table 2
Determinants of municipal deforestation: dynamic panel (2006-2021).
In Deforestation (annual) (€] (@3] (€)) 4 5) (6)
L1 In Deforestation 0.0527%*%** 0.0594%*** 0.0318* 0.1056%*** 0.1029%** 0.0658%**
(0.0149) (0.0169) (0.0191) (0.0148) (0.0163) (0.0163)
ECI-R 0.7857* 0.5200 1.1915%* 2.1865%** 2.0715%** 2.7797***
(0.4024) (0.3856) (0.4966) (0.4603) (0.4077) (0.5702)
L1 ECI-R —0.4554** —0.3864** —0.7069%** —0.4863** —0.3821** —0.8390%**
(0.1843) (0.1832) (0.2478) (0.2021) (0.1945) (0.2513)
L2 ECI-R —0.2472** —0.2168* —0.3015* 0.0122 0.0099 —0.2071
(0.1239) (0.1211) (0.1611) (0.1432) (0.1445) (0.1861)
Soy price 0.0000 0.0000 —0.0145 0.0001 0.0000 0.0008*
(0.0002) (0.0002) (0.0186) (0.0003) (0.0003) (0.0004)
Wood price 0.0507 0.0528 —0.1295 0.0098 0.0681 0.1268
(0.1598) (0.1686) (0.2167) (0.1856) (0.1128) (0.0999)
L1 Meat price —0.0003 —0.0004 —0.0418 —0.0009%** —0.0006** —0.0007**
(0.0002) (0.0002) (0.0284) (0.0003) (0.0003) (0.0003)
Extract price —2.80e-06 —3.29e-06 —3.28e-06 7.52e-06 9.01e-06* 0.0000134***
(6.74e-06) (6.00e-06) (8.67e-06) (5.60e-06) (4.73e-06) (4.47e-06)
L1 Rainfall deviances —0.0459*** —0.0361%** —0.0597*** —0.0426*** —0.0385%** —0.0384***
(0.0061) (0.006) (0.009) (0.0057) (0.006) (0.0065)
In Fines intensity —0.4039%** —0.4007*** —0.3916%** —0.5377%** —0.5394*** —0.4888***
(0.0121) (0.014) (0.0145) (0.0118) (0.0134) (0.0167)
In GDPpc —0.0026 —0.0024 —0.0061* 0.0000 0.0012 0.0059
(0.0027) (0.0028) (0.0036) (0.003) (0.0031) (0.0041)
Period Dummies (base = 2017-2021)
2006-2011 0.3001%** 0.2383%** 0.4339%** 0.2689*** 0.2604*** 0.3237***
(0.0344) (0.0364) (0.0508) (0.0381) (0.0431) (0.0459)
2012-2016 —0.0490** —0.0558%** —0.0310 —0.0531** —0.0276 —0.0340
(0.0213) (0.0206) (0.0268) (0.0235) (0.0266) (0.0299)
In Credit (rea) 0.0016 0.0008 —0.0117%** 0.0544*** 0.0063 0.0048
(0.0074) (0.0078) (0.0042) (0.0113) (0.0051) (0.0054)
In Credit (agriculture) — — —0.0038 — 0.0475%** 0.0226**
(0.0081) (0.01) (0.0101)
In GDPpcO — — (ommited) — — 0.5380%***
(0.2062)
Preserved forest rea (%) — — — — — 0.0002%**
0)
Constant — — — —0.1614 —0.2185 —5.3309%**
(0.1674) (0.1446) (1.6677)
N 10,477 10,477 7250 11,285 11,285 10,630
Municipalities 807 807 558 807 807 760
Model GMM-DIFF GMM-DIFF GMM-DIFF GMM-SYS GMM-SYS GMM-SYS
1-stage 2-stage 2-stage 1-stage 2-stage 2-stage
F 115.5885 82.8364 83.1155 219.8638 16.9052 82.8391
Sargan 1.1e + 03 1.1e + 03 872.276 1.6e + 03 1.6e + 03 3.3e + 03
P-value (Sargan) 0.00 0.00 0.00 0.00 0.00 0.00
Hansen 602.7916 602.7916 46.2074 641.0358 662.1640 72.8181
P-value (Hansen) 0.00 0.00 0.004 0.00 0.00 0.01
AR1 (p-value) 0.00 0.00 0.00 0.00 0.00 0.00
AR2 (p-value) 0.6984 0.9509 0.3083 0.2604 0.4493 0.8628

Notes: Period dummies, meat and soybean prices are treated as exogenous in all models. Past deforestation, fines intensity and wood prices are treated as endogenous
and instrumented within the model. Protected areas are treated as exogenous in columns (2) and (5) and as endogenous in columns (3) and (6). Robust standard errors
were adopted in all specifications. Specification (3) used the local soy price and state wood price to instrument the original variables. The value 0 for parameters or

deviations refer to nonzero estimatives beyond the fourth decimal case.

Caption: Significance level * 0.1 ** 0.05 *** 0.01. Robust standard deviations in parenthesis.

Source: own elaboration.
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robustness, with minimal variation observed in the parameters of most
explanatory variables except ECI-R.

The preferred specification, regression (6), demonstrates a particu-
larly strong and robust association between current changes in
complexity and deforestation. In this model, a 0.1 unit increase in ECI-R
is associated with a 27.8 % increase in deforestation. This result aligns
with the positive association observed up to the 40 % deforestation rate
depicted in Figure 2A.

However, the estimated effect of ECI-R on deforestation becomes
negative in subsequent years, supporting the validity of the environ-
mental Kuznets curve hypothesis. This finding reinforces the notion that,
on average, increasing economic complexity (essentially driven by
diversification) presents future opportunities in non-deforestation sec-
tors. For instance, consider an economy initially reliant solely on
deforestation-related activities. Early increases in economic complexity
might initially occur through the development of comparative advan-
tages in sectors related to the existing knowledge base, potentially
leading to a rise in deforestation.

However, the introduction of a new sector, even if related to existing
ones, brings new knowledge into the economy. This new knowledge
opens a window for agents to invest in novel activities, potentially
transitioning from deforestation-related pursuits to non-deforestation
alternatives. In the framework adopted in this study, this translates to
a potential decrease in the gap between the anticipated returns from
predatory and non-predatory activities in future periods, ultimately
leading to reduced deforestation. It is important to reiterate, however,
that the observed effects will vary depending on the existing productive
structure of each region.

The lagged effect of ECI-R on deforestation remains statistically
significant across all specifications and models. Interestingly, in the
GMM-Differences regressions (1)-(3), the short-term positive effect of
an ECI-R on deforestation, in which an increase in ECI-R increases
deforestation, diminishes almost entirely in the long term. However, the
negative lagged effect does not completely offset the positive short-term
effect in the GMM-System regressions. In the preferred specification
(regression 6), a 0.1 unit increase in complexity leads to an 8.4 %
decrease in deforestation in the second year.

These results underscore the importance of economic complexity in
deforestation dynamics, while also reaffirming the crucial role of envi-
ronmental fines as a deterrent, as previously demonstrated by Assuncao
et al. (2013) and Borner et al. (2014). A 10 % increase in fines is esti-
mated to result in a 4.9 % reduction in annual municipal deforestation.

5.3. Exploring complexity’s role in deforestation and employment
patterns in the Amazon

Table 3 details the probabilities associated with the Probit regression
results. These probabilities illustrate the likelihood of municipalities
belonging to groups with distinct employment and deforestation dy-
namics across different periods. The findings align with existing research,
highlighting the importance of economic complexity in explaining group
membership. However, intriguing shifts in the pattern of productive
transformation emerge when comparing the earliest period (2006-2011)
with more recent ones (2012-2016 and 2017-2021).

During the 2006-2011 period, high levels of ECI-R increase the
probability of membership in Group (1) (characterized by environ-
mental preservation and employment growth) by 20 %. Conversely, for
the 2017-2021 period, a high level of ECI-R decreases the likelihood of
municipalities falling into Group (1) by around 18 %. Furthermore, for
the periods 2012-2016 and 2017-2021, a higher complexity level in-
creases the likelihood of belonging to Group (3) (marked by employ-
ment growth and deforestation) by approximately 25 %. These
contrasting results across periods suggest how different policy choices
might influence growth trajectories.

For the first and second periods (20062011 and 2012-2016), mu-
nicipalities experiencing gains in complexity demonstrate a slightly
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higher probability of belonging to Group (2), which combines preser-
vation with minimal formal employment growth. Additionally, these
municipalities displayed a reduced probability of being part of Groups 1
and 4 during the first and second periods, respectively. Finally, the
variation in economic complexity in the final period (2017-2021) is
marginal, leading to coefficients close to zero.

For categorical variables like municipal preservation level, the
parameter estimates indicate discrete changes relative to the baseline
group. For instance, being in the third and fourth quartiles of preser-
vation (medium-high and high) increases the probability of belonging to
Group (3) by 25 % and 27 %, respectively, compared to low-
deforestation municipalities during 2006-2011. As expected, across all
assessed periods, municipalities within the top 50 % of preserved area
exhibit up to 28 % higher probabilities of belonging to higher annual
deforestation groups (Groups 3 and 4) relative to those with the greatest
proportion of total deforested area. Conversely, municipalities within
the highest preservation quartiles experience a decreased probability of
up to 24 % of belonging to lower deforestation groups (Groups (1) and
(2) compared to those with the least proportion of preserved area. These
observations suggest that while employment growth may vary, munic-
ipalities with medium-high preservation face consistently higher
deforestation pressures.

Cattle ranching is a variable of particular emphasis, as it significantly
enhances the probability of belonging to higher deforestation groups
and diminishes the likelihood of being part of lower deforestation
groups across all periods. The probability of Group (1) membership
decreases by up to 5 % in all periods, while the likelihood of Group 3 and
4 membership sees heightened probabilities between 2006 and 2016
and between 2017 and 2021, respectively. Notably, the variable pertains
to the number of cattle heads rather than the price of a cattle unit, as in
prior tests.

Another noteworthy aspect is the logarithm of the number of fines
from IBAMA (Brazilian Institute of Environment and Renewable Re-
sources). This variable increases the likelihood of belonging to lower
annual deforestation groups by up to 4 % in each period, and conversely,
curtails the probability of joining higher deforestation groups by up to 5
%. A similar trend is observed with the agricultural credit variable,
although its influence is only significant for Group (1) membership
during the second period.

Lastly, the study investigates whether heightened dynamism in the
agricultural, industrial, and service sectors (quantified by the logarithm
of Gross Value-Added) increases the chances of group membership. The
findings reveal that augmented agricultural sector dynamism increases
the probability of municipalities falling into higher deforestation groups
in all periods, while diminishing the odds of belonging to lower defor-
estation groups. The other sectors exhibit distinct effects in different
periods, with the service sector notably reducing Group 4 membership
probability. The remaining control variables are most often not signifi-
cant. Moreover, when they show up significant, their effects are modest.

6. Discussion and limitations

The landmark Paris Agreement, adopted by 196 nations at the 2015
UN Climate Change Conference, established a global commitment to
limit the rise in average global temperatures to well below 2 degrees
Celsius, ideally 1.5 degrees, compared to pre-industrial levels (UNFCCC,
2024). This ambitious target is essential to mitigate the most severe
consequences of climate change. To achieve this objective, signatory
countries pledged to develop and implement Nationally Determined
Contributions (NDCs), outlining their strategies to reduce greenhouse
gas emissions and ultimately achieve net-zero emissions.

However, ensuring a sustainable future goes beyond merely
addressing climate change; it necessitates fostering inclusive develop-
ment. Municipalities within the Brazilian Amazon face distinct chal-
lenges compared to other regions of the country. Limited infrastructure
and unreliable power supplies impede development and restrict access
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Table 3
Probit Model: probability of membership.

Variables 2006-2011 2012-2016 2017-2021

Group (1) Group (2) Group (3) Group 4 Group (1) Group (2) Group (3) Group 4 Group (1) Group (2) Group (3) Group 4
ECI 0.195* —0.134 —0.069 0.208 —0.125 0.041 0.243* 0.063 —0.179* 0.035 0.248* 0.161
A ECI —0.053*** 0.021* 0.0158 —0.011 —0.002 0.009* —0.008 —0.048** 0 0 0 0
Preservation group
Mid-low —0.104%** —0.133%** 0.170%*** 0.017 —0.192%** —0.049 0.058 0.128%*** —0.154%** —0.04 0.120%** 0.047
Mid-high -0.182 0.253%** 0.066 —0.245* —0.158%** 0.213%** 0.143 —0.239%** 0.101%*
High —0.203%** 0.275%** 0.092 —0.218%** —0.127%** 0.082 0.278%** —0.191%** —0.120%** 0.081
In Soy 0.004 0.001 —0.008 0.005 0.007 —0.007* 0.005 —0.007 —0.003 —0.0003 0.011%* —0.009**
In Wood —0.010 0.006 —0.003 0.009 —0.004 0.001 —0.0002 0.005 —0.0005 —0.008* —0.004 0.013**
L1ln Meat —0.054%** —0.010 0.0694*** 0.013 —0.042%** —0.032%%* 0.042%%* 0.027%* —0.036%** —0.019** 0.018 0.035%*
In Extract —0.002 0.001 —0.009 0.009 0.011 —0.004 —0.0004 —0.007 —0.001 0.014* 0.008 —0.022*
In Mining —0.003 —0.005 0.005 —0.001 —0.003 —0.004 0.0004 0.004 —0.001 0 0.004 —0.005
In Credit (agriculture) 0.004 —0.007 —0.005 0.012** 0.004 —0.01 —0.004 0.006 0.004 —0.005 —0.004
L1 In Fines intensity 0.044%** —0.045%** —0.032%** 0.005 0.034%** —0.015 —0.009 0.042%** 0.028%** —0.05%** —0.002
In GDPpcO 0.050 —0.061 —0.013 —0.004 0.043 —0.03 —0.004 —0.051 0.032 0.039 —0.041
Gross Value Added
In Agriculture 0.002 —0.063*** 0.044** 0.065%** —0.088%** —0.031* 0.117%** 0.034 —0.009 —0.065%** 0.07%** 0.038*
In Manufacturing 0.034 —0.053** 0.041* —0.016 —0.081%** 0.023 —0.05** 0.092%** —0.018 —0.031 0.014 0.026
In Services —0.025 —0.039 0.086%** —0.114%** 0.097*** —0.048** 0.016 —0.089%** 0.037 —0.034 0.022 —0.073**

Notes: Group 1: Preservation-Employment; Group 2: Preservation-Unemployment; Group 3: Deforestation-Employment; Group 4: Deforestation-Unemployment. See Section 3.3. for a detailed description of each group.

Base group: low preservation.
Caption: Significance level * 0.1 ** 0.05 *** 0.01.

Source: own elaboration.
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to essential services. Furthermore, economic dependence on resource
extraction activities like logging and mining fuels environmental
degradation and social conflict. Additionally, traditional communities
struggle to preserve their land rights and way of life amidst these
mounting pressures. These factors coalesce to create a situation of
poverty, limited economic opportunity, and heightened environmental
vulnerability, often more severe than in other parts of Brazil.

This study reveals a multifaceted relationship between economic
complexity and deforestation in the Amazon rainforest. While some
findings may appear contradictory at first glance, they contribute to a
nuanced understanding with significant implications for the region’s
sustainable development.

Overall, the results suggest that economic complexity increases
deforestation in the current period, followed by a reduction in subse-
quent periods. This implies that economic diversification might not lead
to immediate reductions in deforestation. However, higher complexity
could foster environmental preservation in the long run. These findings,
however, appear contingent on other factors, particularly the existing
productive structure and development trajectory of each region.

These observations support the hypothesis of an environmental
Kuznets curve between economic complexity and deforestation in the
Amazon. This signifies a trade-off between productive development and
short-term deforestation. Furthermore, the study suggests that increases
in ECI might actually accelerate deforestation in regions with lower-
middle deforestation rates. This suggests a potential tipping point,
where initial economic growth can lead to increased forest loss before a
transition to more sustainable practices occurs. Additionally, munici-
palities with medium-low conservation status were identified as most
vulnerable to deforestation pressures. This highlights the need for tar-
geted conservation efforts in these areas.

Environmental policies also appear to play a crucial role in mediating
this relationship. Stricter enforcement of environmental regulations
appears to amplify the negative effect of economic complexity on
deforestation. Encouragingly, the study also finds that economic
complexity can significantly increase the probability of municipalities
achieving high employment without deforestation, particularly during
periods of strong environmental law enforcement. This suggests that a
green economic pathway is indeed possible for the Amazon.

Limitations to the study include the lack of data for all deforestation-
related variables during the analyzed period. These limitations include
local commodity prices and road infrastructure changes (see section 3.1).
Additionally, the research did not explicitly address deforestation within
agrarian settlements of the Legal Amazon. However, as Alencar et al.
(2016) concluded, the deforestation dynamics in these settlements mirror
those of the region as a whole, typically beginning with road construction
for logging followed by conversion of cleared land to pasture for livestock
farming. The municipal deforestation records employed in this study
inherently capture these dynamics. Furthermore, it is important to note
that the registered area of settlements across the nine Legal Amazon states
represents only 10 % of the total area (CAR, 2023).

Another limitation is the study’s reliance on formal employment data
to calculate economic complexity and assess economic activity levels
within each sector. Brazil has a high share of informal employment,
likely even more prevalent in the Amazon region due to its relative
poverty and remoteness. Therefore, future research employing alterna-
tive data sources (if available) would be necessary to solidify the un-
derstanding of the relationship between economic complexity,
structural change, and deforestation in the Amazon.

Future research should prioritize two key areas. First, a deeper
exploration of the qualitative initial conditions of productive structures
is necessary to understand when boosting economic complexity in-
creases or reduces deforestation. The relatedness perspective proposed
by Hidalgo et al. (2018) offers valuable insights in this regard. Second,
future research should identify the specific types of economic activities
that can contribute to a “green” economic pathway for the region,
considering the diverse characteristics of Amazon municipalities,
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including deforestation rates, economic complexity levels, infrastruc-
ture, and other factors.

7. Conclusion

This study investigated the relationship between economic
complexity and deforestation in the Brazilian Amazon. The results sug-
gest that while economic complexity might initially increase defores-
tation, it can also reduce it in the long run. Specifically, a 0.1 unit
increase in regional complexity leads to a 27.8 % increase in defores-
tation in the current period, followed by an 8.4 % decrease in the
following year. This pattern suggests that economic diversification may
not immediately reduce deforestation but can lead to long-term envi-
ronmental benefits.

Environmental policies play a crucial role in this relationship.
Stricter enforcement of environmental regulations, such as higher
environmental fines, significantly reduces deforestation. Municipalities
with higher regional complexity and strong environmental law
enforcement are more likely to achieve high employment without
increasing deforestation, showing that a green economic pathway is
possible for the Amazon.

However, the study has limitations, including the lack of compre-
hensive data on all deforestation-related factors and the reliance on
formal employment data, which may not fully capture economic activity
due to the high prevalence of informal employment in the Amazon.
Future research should address these gaps by exploring the initial con-
ditions of productive structures and identifying specific economic ac-
tivities that can support a sustainable development path for the region.

The evidence suggests, nonetheless, that increasing economic
complexity can be a viable path towards sustainable development in the
Amazon. Yet, the results highlight also that increasing economic
complexity should not be seen as a standalone strategy. A multifaceted
policy approach is necessary, combining the promotion of green sectors
with strong environmental law enforcement and policies that reduce the
profitability of deforestation-related activities.
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Appendix 1

Appendix 1:. Notes on the fixed effects model

In Table 1, the results indicate that changes ECI-R are negatively
(and significantly) correlated with shifts in deforestation patterns with a
two-year lag. This finding is not unexpected, considering the relatively
lower average complexity levels of municipalities in the analyzed region
compared to the national average. The correspondence between rising
ECI-R values in low-complexity municipalities and environmentally
impactful activities resonates with the principles of the environmental
Kuznets curve theory. On an aggregate level, the lack of significance for
current-term explanatory variables might be attributed to a trade-off,
where the potential positive correlation of these variables in higher-
complexity municipalities results in a counteractive effect.

The regressions show also that the most influential explanatory
variable for deforestation reduction is the intensity of environmental
fines. Remarkably, this variable’s coefficient remains robust across all
specifications, suggesting its influence operates independently of other
factors. Additionally, excessive rainfall in the preceding year and in-
creases in per capita GDP (PIBpc) exhibit a moderate correlation with
annual deforestation reductions. Conversely, the outcomes reveal a
positive correlation between wood prices, growth in extractive activ-
ities, and annual deforestation rates. Throughout all estimations, the
inclusion of time-period dummies consistently confirms the presence of
aggregate temporal deforestation dynamics. This accommodates mac-
roeconomic shocks, average effects of product prices, and policy changes
at both regional and national scales. However, the coefficients for other
variables generally lack statistical significance in most specifications.

The variable capturing the change in municipal road length, along
with the measure of 2010 road infrastructure, were excluded from most
models due to collinearity. This issue arises for two reasons. First, road
infrastructure exhibits a high degree of correlation with other included
variables, such as GDP per capita, deforestation level, and credit avail-
ability. Second, the study is limited by the lack of yearly data on road
infrastructure changes.

Regressions (1) and (2) present the results for the baseline specifi-
cation without and with fixed effects, respectively. In both cases, the
ECI-R fails to exhibit significance at both the current level and the first
lag. The primary distinction between these estimations lies in the
inversion of the coefficient for the current-term variable — positive in the
former and negative in the latter. Beyond ECI-R, the significance of
protected areas is evident in regression (1). However, positive co-
efficients across all other specifications contradict initial expectations,
suggesting potential endogeneity of the variable. Other control variables
maintain similar levels of significance and impact in both models.

Selecting estimation with individual fixed effects eliminates time-
invariant explanatory variables redundant such as the initial income
level (PIBpcO) and state-specific dummies. Regression (1) also enables
an examination of how these variables contribute to explaining the
variance in annual municipal deforestation in the region. As anticipated,
estimations assuming random effects indicate a strong and significant
positive association between PIBpcO and annual deforestation. These
same estimations also highlight variations in annual deforestation levels
among states: Acre exhibits higher average levels, while Tocantins,
Maranhao, and Amapa experience lower levels.

Regression (3) introduces an additional lag into the basic model to
explore the hysteresis effect of the ECI-R on deforestation. The signifi-
cant lag effect is replicated across all other estimations, suggesting that a
0.1 increase in the ECI-R is associated with a 1.7 % reduction in defor-
estation over two years. This estimation also includes dummies for
groups formed by quartiles of the municipality’s percentage of non-
deforested area (preserv). These results demonstrate that municipal-
ities with lower deforestation rates are associated with lower levels of
non-deforested area, while municipalities in the intermediate position
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(2nd quartile, higher deforestation) exhibit significantly higher annual
deforestation rates.

Regressions (4) and (5) explore whether the preservation level and the
complexity level of municipalities influence the relationship between ECI-
R and annual deforestation. In both cases, ECI-R parameters remain stable
and statistically significant. The results in regression (4) reveal a signifi-
cant U-shaped association between the interaction of preservation (pre-
serv) groups and ECI-R with annual deforestation. This interaction
demonstrates a consistent negative impact across both the highest and
lowest deforestation quartiles, with a positive impact in the intermediate
group characterized by higher deforestation. This finding reinforces the
results presented in Fig. 2A. Conversely, the findings in regression (5)
partly support the hypothesis that the effect of ECI-R on deforestation
should strengthen as municipal complexity level increases. The coefficient
for the interaction between ECI-R and the dummy variables representing
municipalities in lower complexity quartiles of the region approaches
zero and lacks statistical significance. The parameter is substantial and
highly significant for the medium-high complexity group, where ECI-R
expansions correspond to a similar percentage reduction in current
deforestation. The situation for municipalities in the region’s highest
complexity quartile is intriguing. The positive parameter might suggest
that ECI expansions contribute to deforestation increases in these mu-
nicipalities, hinting that despite better opportunities, the current pro-
ductive specialization might constrain these municipalities to non-green
structural change trajectories. However, the insignificance of the
parameter indicates high case variability within the group, possibly
arising from omitted relevant factors or endogeneity issues.

Certain results reported in Table 1 are inconsistent with recent
findings in the literature, particularly the insignificance of meat and
soybean prices. This incongruence prompts us to consider various pos-
sibilities, including the interaction of these elements with other factors,
measurement errors in the adopted variables, shifting patterns of in-
fluence over time, and/or localized impact due to the existence of an
agricultural belt in the region. Another possible explanation for those
results is the importance of the land markets in the amazon region, as
argued by Costa (2023). In those markets, deforestation is the technol-
ogy to produce “land-without-forest” from “land-with-forest”, and the
land-without-forest is the product itself. Consequently, this market
works “relatively autonomously in relation to the economy of agricul-
tural products, producing land-without-forest in countercyclical move-
ments to business” (p. 330). A deeper investigation on this hypothesis
can constitute an interesting path for future studies.

Measurement errors could arise, for instance, from the fact that the
data does not distinguish between events occurring in January and
December of the same year. This might be the case not only for ECI-R
and rainfall, but also for wood and soybean prices. For instance, a
price surge at the end of one year could lead to increased forest clearance
or planting/harvesting in the following year. Take soybeans, for
example, with a planting window between September and October, and
harvesting between January and May. Price fluctuations for a bag of
soybeans might impact both the current and future periods, depending
on timing. Consequently, the effect on deforestation might not be fully
identified within the current period. However, introducing lags for these
variables into the model did not change their significance.

The livestock sector operates on a longer cycle due to its nature,
involving the fattening of calves over several years. These cycles, though
historically diminishing due to reduced average cattle slaughter age,
presently span about 5-6 years (Embrapa, 2023). When fat cattle supply
increases, prices drop, affecting other categories (lean cattle, calves, and
breeding cows) as well. Driven by financial difficulties, breeders sell more
female cattle for slaughter. This influx of females into the market reduces
meat prices even further. Conversely, during periods of low supply, when
the number of breeding cows shrinks, calf production decreases. After
several years, this shortage of cattle for slaughter and replacement heifers
leads to increased prices, restarting the cycle. The period from 2006 to
2011 saw an upswing followed by a downturn between 2012 and 2014.
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This cycle was disrupted by a sharp increase after the 2014 Brazilian
water crisis, impacting until the end of 2016. The years 2017 to 2019
again brought a period of decline, causing a scarcity of breeding cows and
initiating a new cycle of growth starting in 2020. Consequently, part of
the insignificance of this variable in the estimations could theoretically be
attributed to the inclusion of period dummies, as these coincide with the
cycles of the Brazilian livestock industry.

Appendix 2:. Notes on the dynamic panel model

As previously emphasized, GMM facilitates the incorporation of lags
of the explained variable among the regressors, allowing us to probe the
dependence of the annual deforestation trajectory. This exploration is
essential in our study due to the potential influence of preservation/
deforestation levels on the impact of ECI-R on deforestation. Such
interaction could introduce bias in estimating the ECI-R parameter.

As expected, the regressions indicate the existence of deforestation
trajectory dependence, with the lagged variable exhibiting a highly
significant positive parameter across all specifications. Regressions (1)
and (4) show one-step coefficient estimates, while the rest employ two-
step processes. Although the latter is asymptotically more efficient, we
adopt robust estimates with Windmeijer’s (2005) correction for finite
samples to counteract potential downward bias in standard errors. The
use of robust methods ensures consistent standard error estimates in the
presence of heteroskedasticity and autocorrelation patterns within the
panels (Roodman, 2006). Furthermore, all specifications include period
dummies, as the autocorrelation test and robust coefficient standard
error estimates assume no interindividual correlation in idiosyncratic
errors. Additionally, we exercised caution in selecting the number of
lagged instruments to avoid excessive adjustments that might eliminate
components responsible for endogeneity without overcorrecting. The
Hansen statistic validates the exogeneity of the instrument subgroups in
all estimations.

Likewise, the regressions indicate a negative connection between the
average value derived from extractive production and deforestation.
However, the average wood value remains insignificant across all tested
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specifications. Both soybean and meat prices are significant in the GMM-
Sys models. This outcome suggests that heightened soybean prices might
indeed contribute to deforestation, although this impact is relatively
modest compared to other factors. Conversely, a significant negative
association emerges between meat price and deforestation. Yet, this
seemingly contradictory phenomenon might be elucidated by the cycle
of the Brazilian livestock industry, as discussed earlier. Meat prices tend
to rise precisely when the cattle population decreases.

In regression (3), meat price is instrumented using milk price.
Additionally, the specification incorporates state averages for wood
prices and local soybean prices as instruments for the original variable.
The instrumentalized variables’ parameters remain not significant.
Alternative instrumentalization options were also explored, incorpo-
rating lags of the variables, but these did not yield significant co-
efficients. Lastly, the specification encompasses agricultural activity
credit allocation, initial GDP per capita, and complexity group dummies.
Although the former lacks significance (general credit is significant and
negatively parameterized), the latter were ultimately omitted from the
model due to collinearity with other variables.

Regression (6) probes the model’s sensitivity to the inclusion of
potentially endogenous variables, such as initial GDP per capita and
total deforestation levels. Both variables were significant and aligned
with anticipated outcomes. The parameter values for other variables
experienced minimal changes, except for soybean price. Similar to
specifications (3) and (5), specific agricultural activity credit was
introduced. The positive significance of this variable supports that credit
could be linked to deforestation in the region. Lastly, it’s noteworthy
that the inclusion of the variable capturing formal mining activity failed
to yield significant parameters across any model, leading to its exclusion
from the baseline model.

Appendix 3:. Probit Model: Factors influencing membership

Variables 2006-2011 2012-2016 2017-2021
Group (1) Group (2) Group (3) Group 4 Group (1) Group (2) Group (3) Group 4 Group (1) Group (2) Group (3) Group 4

ECI 1.0816* —0.7234 —0.2354 0.8084 —0.5542 0.2204 0.7375 0.1978 —0.9021* 0.1828 0.8010* 0.5693
A ECI —0.2967** 0.1186* 0.0541 —0.0443 —0.011 0.0533* —0.0261 —0.1512%* 0 0 0 0
Preservation group

Mid-low —0.478*** —0.614*** 0.6225*** 0.0762 —0.725%** —0.2069 0.1892 0.4648***  —0.6187*** —0.1785 0.4198*** (0.1839

Mid-high —0.901*** 0.9020*** 0.2641 —1.000%** —0.847*** 0.6444* 0.5107*** —1.1404*** —0.551*** 0.7376*** 0.3679**

High —1.039*** 0.9785*** 0.3573 —0.851*** —0.6218** 0.2647 0.8962*** —0.8131*** —0.6086** 0.8738*** 0.3023
In Soy 0.0105 —0.0291 0.0194 0.0318 —0.0378* 0.018 —0.0231 —0.0198 —0.0019 0.0368**  —0.0351*
In Wood 0.0352 —-0.0117 0.0377 —0.0202 0.0079 —0.0006 0.0183 —0.0026 —0.0424* —-0.0148
In Meat —0.058 0.2365***  0.052 —0.188*** —0.174*** 0.1281*** 0.0868**  —0.1854*** —0.1009* 0.0598
In Extract 0.0101 —0.0313  0.0374 0.0491 —0.0237 —0.0014 —0.024 —0.009 0.0731* 0.0288 —0.0797*
In Mining —0.0287 0.0177 —0.0058 —0.0168 —0.0242 0.0013 0.0144 —0.0066 0 0.0161 —0.0209
In Credit (agriculture) 0.0530**  0.0248 —0.0239 —0.0229  0.0572**  0.0217 —0.0317 —0.0156 0.0342 0.0252 —0.0187 —0.0146
In Fines intensity 0.1643***  0.2416*** —0.153*** —0.124*** 0.0224 0.1867***  —0.0472 —0.0313 0.2121***  0.1465*** —0.178*** —0.0095
In GDPpcO —0.3376* 0.2708 —0.2103 —0.0534 —0.0204 0.2312 —0.0916 —0.0145 —0.2602 0.1693 0.1271 —0.146
Gross Added Value

In Agriculture 0.0113 —0.341*** 0.1530**  0.2548*** —0.392*** —0.1672* 0.3541*** 0.1073 —0.0486 —0.340*** 0.2272*** 0.1369*

In Manufacturing 0.1900* —0.2872** —0.063 —0.357*** 0.1281 —0.1649*  0.2888*** —0.0921 —0.1613 0.0472 0.0938

In Services ~0.1389  -0.2146 —0.441%** 0.4303 —0.2617** 0.0507 —0.280%** 0.1886 —0.1781  0.0725 —0.2595%*
Constant 4.1506*** 5.8953*** 0.9389 4.7491 2.3509* —4.293%**  —2.7465** 3.2437* 5.6974*** —6.528*** —0.6146
N 2755 2755 2755 2755 2729 2729 2729 2729 1653 1653 1653 1653
Wald chi2 138.33 199.36 179.59 78.57 143.07 123.05 87.07 69.20 136.10 111.27 14.27 35.20
Pseudo R2 0.2137 0.3318 0.2669 0.1121 0.2199 0.152 0.1293 0.094 0.2177 0.2082 0.2338 0.0632

Notes: 1. Group (1): Highlight in the increase of formal jobs and lower level of deforestation; Group (2): Outstanding in preservation, but not in jobs; Group (3): Highlight in the
increase of formal jobs, but with high loss of vegetation cover, comparatively; Group 4: High deforestation and low employment dynamics. Base group: low preservation.

Caption: Significance level * 0.1 ** 0.05 *** 0.01.

Source: own elaboration.
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